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l   UPC++ is a C++11 PGAS library 
l   Lightweight, asynchronous, one-sided communication (RMA) 
l   Asynchronous remote procedure call (RPC) 
l   Data transfers may be non-contiguous 
l   Futures manage asynchrony, enable communication overlap 
l   Collectives, teams, remote atomic updates 
l   Provides building blocks to construct irregular data structures 

l   Latest software release: September 2019 
l   Runs on systems from laptops to supercomputers 

l   Easy on-ramp and integration 
l   Enables incremental development 
l   Selectively replace performance-critical sections with UPC++ 
l   Interoperable with MPI, OpenMP, CUDA, etc.  
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Case	1:	Easy	Distributed	Hash-Table	via	Function	Shipping	and	Futures	
•  Distributed hash-table design is based on function shipping 

•  RPC inserts the key metadata at the target 
•  Once the RPC completes, an attached callback issues a 

one-sided RMA Put (rput) to store the value data 
// C++ global variables correspond to rank-local state 
std::unordered_map<uint64_t, global_ptr<char>> local_map; 
// insert a key-value pair and return a future 
future<> dht_insert(uint64_t key, char *val, size_t sz) { 
 future<global_ptr<char>> fut = 
     rpc(key % rank_n(),             // RPC obtains location for the data 
             [key,sz]() -> global_ptr<char> {    // lambda invoked by RPC 
               global_ptr<char> gptr = new_array<char>(sz);  
               local_map[key] = gptr;              // insert in local map 
               return gptr; 
             }); 
 return fut.then(       // callback executes when RPC completes 
       [val,sz](global_ptr<char> loc) -> future<> {  
           return rput(val, loc, sz); });    // RMA Put the value payload 
} 

Efficient weak scaling to 512 nodes (34K cores) on Cori Xeon Phi * 
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•  Benefits: 
•  Use of RPC simplifies distributed data-structure design 

•  Argument passing, remote queue management and 
progress engine are factored out of the application code 

•  Asynchronous execution enables overlap 

Case	2:	Asynchronous	Sparse	Matrix	Solvers	
•  A time consuming operation in multifrontal sparse solvers: 

•  Extend-add: update a distributed sparse matrix, scattering the 
packed data source 

•  Challenge: 
•  This operation has low computational intensity and exhibits irregular 

communication patterns 
•  Solution: 

•  UPC++ function shipping via RPC enables efficient 
communication and asynchrony, increasing overlap and improving 
performance of Extend-add 

•  Impact: 
•  UPC++ enhances overlap in Extend-add, yielding up to a 1.63x 

speedup over MPI collective and 3.11x over MPI message-passing 
implementations.  The green line in the figure corresponds to the 
fastest of these two variants. 
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Strong scaling comparison of the UPC++ implementation of 
Extend-add using RPC and an MPI variant for the audikw_1 
matrix on NERSC Cori Xeon Phi (using 64 cores/node) * 
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Private address spaces 

Global address space 

Local task queue 
Function shipping across nodes 

Rank 0 Rank 1 Rank 2 Rank 3 

l  Integration efforts with ExaBiome (WBS 2.2.4.04) 
l  ExaBiome's HipMer 1.2.1 release (September 2019) 

l  The k-mer counting step rewritten from MPI to UPC++ 
l  UPC++ RPC is a better fit to the problem 
l  Reduces code size by roughly ½ 

l  More readable and maintainable 
l  Lower memory requirements and better scaling 

l  Current work-in-progress 
l  Previous UPC stages of HipMer pipeline rewritten in UPC++ 
l  Approximately 85% reduction in code size 
l  ExaBiome team's initial results: 

l  Comparable genome assembly results 
l  Lower memory requirements and better performance 

l  Integration efforts with ExaGraph (WBS 2.2.6.07) 
l  Worked with PNNL team to develop two UPC++ versions of a 

graph matching problem from their IPDPS’19 paper 
l  RMA version uses Puts to communicate among processes 
l  RPC version uses asynchronous remote procedure calls to 

execute logic on remote parts of the graph 
l  Initial results on NERSC Cori Haswell (3.6B-edge Friendster): 

l  Both UPC++ versions competitive with (or better than) best 
MPI versions up to at least 4,096 processes 

l  At 4,096 processes: UPC++ RMA version is 4.3x faster than 
best MPI-3 (RMA+neighborhood collective) version 

* For more details see IPDPS’19. https://doi.org/10.25344/S4V88H 
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