
UPC++:	Asynchronous	RMA	and	RPC	
Communication	for	Exascale	Applications	

Team	Members:	Amir	Kamil,	John	Bachan,	Dan	Bonachea,	Paul	H.	Hargrove,	Erich	Strohmaier	and	Daniel	Waters	

UPC++	at	Lawrence	Berkeley	National	Lab		(upcxx.lbl.gov)	
	
	

l  UPC++ is a C++11 PGAS library
l  Lightweight, asynchronous, one-sided communication (RMA)
l  Asynchronous remote procedure call (RPC)
l  Data transfers may be non-contiguous
l  Futures manage asynchrony, enable communication overlap
l  Collectives, teams, remote atomic updates
l  Provides building blocks to construct irregular data structures

l  Latest software release: September 2019
l  Runs on systems from laptops to supercomputers

l  Easy on-ramp and integration
l  Enables incremental development
l  Selectively replace performance-critical sections with UPC++
l  Interoperable with MPI, OpenMP, CUDA, etc.

© 2020, Lawrence Berkeley National Laboratory

This research was supported in part by the Exascale Computing Project (17-SC-20-SC), a collaborative effort
of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration.

This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of
Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231.

This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science
User Facility supported under Contract DE-AC02-06CH11357.

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No.
DE-AC05-00OR22725.

Case	1:	Easy	Distributed	Hash-Table	via	Function	Shipping	and	Futures	
•  Distributed hash-table design is based on function shipping

•  RPC inserts the key metadata at the target
•  Once the RPC completes, an attached callback issues a

one-sided RMA Put (rput) to store the value data
// C++ global variables correspond to rank-local state
std::unordered_map<uint64_t, global_ptr<char>> local_map;
// insert a key-value pair and return a future
future<> dht_insert(uint64_t key, char *val, size_t sz) {
 future<global_ptr<char>> fut =
 rpc(key % rank_n(), // RPC obtains location for the data
 [key,sz]() -> global_ptr<char> { // lambda invoked by RPC
 global_ptr<char> gptr = new_array<char>(sz);
 local_map[key] = gptr; // insert in local map
 return gptr;
 });
 return fut.then(// callback executes when RPC completes
 [val,sz](global_ptr<char> loc) -> future<> {
 return rput(val, loc, sz); }); // RMA Put the value payload
}

Efficient weak scaling to 512 nodes (34K cores) on Cori Xeon Phi *

U
P

IS

G
O

O
D

•  Benefits:
•  Use of RPC simplifies distributed data-structure design

•  Argument passing, remote queue management and
progress engine are factored out of the application code

•  Asynchronous execution enables overlap

Case	2:	Asynchronous	Sparse	Matrix	Solvers	
•  A time consuming operation in multifrontal sparse solvers:

•  Extend-add: update a distributed sparse matrix, scattering the
packed data source

•  Challenge:
•  This operation has low computational intensity and exhibits irregular

communication patterns
•  Solution:

•  UPC++ function shipping via RPC enables efficient
communication and asynchrony, increasing overlap and improving
performance of Extend-add

•  Impact:
•  UPC++ enhances overlap in Extend-add, yielding up to a 1.63x

speedup over MPI collective and 3.11x over MPI message-passing
implementations. The green line in the figure corresponds to the
fastest of these two variants.

 Processes

Ti
m

e
(s

)

Strong scaling comparison of the UPC++ implementation of
Extend-add using RPC and an MPI variant for the audikw_1
matrix on NERSC Cori Xeon Phi (using 64 cores/node) *

D
O

W
N

 IS

G
O

O
D

Private address spaces

Global address space

Local task queue
Function shipping across nodes

Rank 0 Rank 1 Rank 2 Rank 3

l  Integration efforts with ExaBiome (WBS 2.2.4.04)
l  ExaBiome's HipMer 1.2.1 release (September 2019)

l  The k-mer counting step rewritten from MPI to UPC++
l  UPC++ RPC is a better fit to the problem
l  Reduces code size by roughly ½

l  More readable and maintainable
l  Lower memory requirements and better scaling

l  Current work-in-progress
l  Previous UPC stages of HipMer pipeline rewritten in UPC++
l  Approximately 85% reduction in code size
l  ExaBiome team's initial results:

l  Comparable genome assembly results
l  Lower memory requirements and better performance

l  Integration efforts with ExaGraph (WBS 2.2.6.07)
l  Worked with PNNL team to develop two UPC++ versions of a

graph matching problem from their IPDPS’19 paper
l  RMA version uses Puts to communicate among processes
l  RPC version uses asynchronous remote procedure calls to

execute logic on remote parts of the graph
l  Initial results on NERSC Cori Haswell (3.6B-edge Friendster):

l  Both UPC++ versions competitive with (or better than) best
MPI versions up to at least 4,096 processes

l  At 4,096 processes: UPC++ RMA version is 4.3x faster than
best MPI-3 (RMA+neighborhood collective) version

* For more details see IPDPS’19. https://doi.org/10.25344/S4V88H
	

WBS	2.3.1.14	

