. Kathy Yelick® =

*. Associatéliaboratory

‘Lawrenc _F))\QI-
Y pProfessore

gﬁ//////‘?‘ﬁ

0

ab ‘ ’

((=
‘(—

=

//

VA

=

oy

207/

\ =

’ £
%ﬁwﬂ\
o/
7 7

W

/

N

/

i 1°
(7

"

b

)i

/

)

/

-

,,///////////

)

\

7

D
AN

NNk
I

A
£

12110,

Parallel Programming Problem: Histogram

» Consider the problem of computing a histogram:
—-Large number of “words” streaming in from somewhere
-You want to count the # of words with a given property

* In shared memory

—Lock each bucket
As |Bs |Cs|... |Ys |Zs

* Distributed memory: the array is huge and spread out

—Each processor has a substream and sends +1 to the
appropriate processor... and that processor “receives”

upL

As [B’s Cs | D’s Y's | Z's

Goals of PGAS Programming

« Applications: convenient programming of irregular codes
-Graphs
-Hash tables
-Sparse matrices
- Adaptive (hierarchical) meshes

* Machines: expose best available performance on a
given machine

—-Low latency for small messages
-High bandwidth even for medium sized messages
—High injection bandwidth

PGAS = Partitioned Global Address Space

» Global address space: thread may directly read/write
remote data

» Convenience of shared memory
* Partitioned: data is designated as local or global
* Locality and scalability of message passing

Global address space

Hello World in UPC

« Any legal C program is also a legal UPC program

* [f you compile and run it as UPC with P threads, it will
run P copies of the program.

 Using this fact, plus a few UPC keywords:

#include <upc.h> /* needed for UPC extensions */
#include <stdio.h>

main () {
printf ("Thread %d of %d: hello UPC world\n",
MYTHREAD, THREADS) ;

-3
A
rrrrrrr |"'|

BERKELEY LAB

PGAS means directly accessing remote data

« SPMD: fixed number of threads (e.g., one per core)
« Distributed arrays are built-in
shared int a[l100]; // shared array

al[l0] = 3; // put, possibly remote

int x = a[l4]; // get, possibly remote
 Global pointer are like C pointers:

shared int *p = &a[4]; // can also upc _alloc

*p = 37 // put
X = *p; // get
p++; // move to next element

« UPC has locks and barriers for synchronization and
collective communication (broadcast, reduce, etc.)

Partitioned Global Address Space (review)

(o),

O 2 4 6 | 8 22 | 24
©

Q.

7))

n

7))

o

p S

g

© I:] 1: /‘ (XX 1:

=

'8 g ! g: / g: /
O

p0O p1 pN

* Directly read/write remote memory; partitioned for locality
* One-sided communication underneath:
Put: afil=...; *p=...;, upc_mem_get(..)
Get: ... =a[i]...; ...=7p; i upc_mem_putf(...)

UPC Non-blocking Bulk Operations

Important for performance:

« Communication overlap with computation

« Communication overlap with communication (pipelining)
 Low overhead communication

#include<upc _nb.h>

upc_handle t h =
upc_memcpy nb(shared void * restrict dst,
shared const void * restrict src,

size t n);
void upc_sync(upc handle t h); // blocking wait
int upc_sync_attempt(upc handle t h); // non-blocking

it rerer

BERKELEY LAB

One-Sided Communication in PGAS (e.g., GASnet inside)

two-sided message

id dat load > host
message i ata payloa > CPU

: network

one-sided put message _
interface
address data payload >
memory

* A two-sided message needs to be matched with a receive
— Ordering requirements on messages can also hinder bandwidth

* A one-sided put/get message can be handled directly by a network
interface with RDMA support

— Decouples transfer from synchronization
— Avoids interrupting the CPU or storing data from CPU (preposts)

-3
A
rrrrrrr |"'|

BERKELEY LAB

Latency on a Cray Aries (NERSC Cori-P1)

Latency on Cori (Haswell with Aries)
1000

100

MS

10

1B 4B 16B 64B 256B 1KB 4KB 16KB 64KB 256KB 1MB 4MB
Message Size

-3
A
rrrrrrr ""|

BERKELEY LAB

el
m
o

Bandwidth on a Cray Aries (NERSC Cori-P1)

Bandwidth on Cori (Haswell with Aries)

10
9 T~
8
7
6
5
4 e===GASnet
3 =s=\P|
2
1
0 -

Message Size

16B 64B 2568 1KB 4KB 16KB 64KB 256KB 1MB 4MB

-3
A
rrrrrrr ""|

Medium sized “flood” bandwidth across machine

Percent of peak for 4 KB messages in flood bandwidth
100% 94%

670
152
90% - B GASNet

402
80% {1/’ 15 252 mMP

70% -
23

31

60% -

50% -

Percent HW peak

40% -
30% -
20% -

10%

0% a T T
Elan3 Elan4 Myrinet G5/IB Opteron/IB SP Gemini Aries BG/Q

~S
A
rreeeee |"'|

BERKELEY LAB

Application Challenge: Fast All-to-All

chunk = all rows with same destination

2/\

Transpose in 3D FFT

» Three approaches:

* Chunk:
« Wait for 2" dim FFTs to finish
* Minimize # messages
 Slab:

» Wait for chunk of rows destined for 1
proc to finish

» Overlap with computation

* Pencil:
» Send each row as it completes
« Maximize overlap and

* Match natural layout slab = all rows in a single plane with
same destination

pencil =1 row

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea

Bisection Bandwidth

1100 T T T

T T
I Best NAS Fortran/MPI : Chunk (NAS FT with FFTW)
,,,,,, Best MPI (always slabs) o A -
[Best MPI (always Slabs) Best UPC (always pencils)

200 |- |:| Best UPC (always Pencils) e e S . -

1000 -

800 TR S D .
700F TR EERE R SRR
600

500

MFlops per Thread

400

300 | |- EEESH

200

100

et 64 56 56 A2
\yrnet \nBand 2 gren 2 gan °

 Avoid congestion at node interface: allow all cores to communicate

* Avoid congestion inside global network: spread communication
over longer time period (send early and often)

U
Fﬁ DEGAS Overview

BERKELEY LAB

FFT Performance on BlueGene/P (Mira)

UPC implementation 35

outperforms MPI

——Slabs

30007 g Slabs (Collective)

—+—Packed Slabs (Collective)

Both use highly 2500

=>—=MPI Packed Slabs

optimized FFT library

2000

on each node
UPC version avoids ¢ ..,

lops

send/receive

synchronization 1000
Lower overhead

500

V;

Better bisection 056 512 1024 2048 4096 8192 16384 32768
bandwidth Num. of Cores

De novo Genome Assembly

* DNA sequence consists of 4 bases: A/C/G/T
* Read: short fragment of DNA

* De novo assembly: Construct a genome
(chromosomes) from a collection of reads

0% B T o O,
@ RavensburgetyPuzzle

500

PGAS in Genome Assembly

« Sequencers produce fragments called “reads”
» Chop them into overlap fixed-length fragments, “K-mers”
 Parallel DFS (from randomly selected K-mers) = “contigs”

Contig 2: AACCG

Contig 1: GATCTGA
[GD @ €9 3

Contig 3: AATGC

« Hash tables used here (and in other assembly phases)
-Different use cases, different implementations
« Some tricky synchronization to deal with conflicts

» "
|

Partitioned Global Address Space Programming

Global address

space

PO p1 pn

« Store the connections between read fragments (K-mers) in a hash
table

* Allows for TB-PB size data sets

'\ DEGAS

HipMer (High Performance Meraculous) Assembly Pipeline

Distributed Hash Tables in PGAS

« Remote Atomics, Dynamic Aggregation, Software Caching
« 13x Faster than MPI code (Ray) on 960 cores

v, overall time
e kmer analysis ===l
4096 . e, o contig generation ==sshes=:]
L scaffolding
2048 g , M — ‘ideal overall time »mun |
"y, ."l'
1024 iy g
7} s, @ 'my
o) ay, ’.'l:,
c - e, T,
o 512 o
o ..,
) v, ‘.,
D ose | -, e
A, Ty, ‘1
128 -,..‘.,. .,'—."'"'--.'.,'._.']
........... N
64 = i
""""" o
32 g ","','*l, ---------------
480 960 1920 3840 7680 15360
Number of Cores

16384 ;- overall time
My, kmer analysis ===d=:
8192 Mttty ---contig generation ===
,,,,,,,,,,,, scaffolding
4096 | e e __ideal overall time e |
u'l, ,,,,,,
2048 B o :7’7',':7,,,” iii .
.. e,
1024 e Mt
**H..,,
512 e, -
h [N
256 Aeriii N |
128 | T,
64 B V""“"‘llll o
........... v T
32)) PR Ll LT 7\
960 1920 3840 7680 15360

Number of Cores

SC’15

Evangelos Georganas, Aydin Bulug, Jarrod Chapman, Steven Hofmeyr, Chaitanya Aluru, Rob Egan,
Lenny Oliker, Dan Rokhsar, and Kathy Yelick. HipMer: An Extreme-Scale De Novo Genome Assembler,

A
reeeoeee] M)

BERKELEY LAB

Comparison to other Assemblers

140 hours

Runtime on Assemblers

Equal core counts (960 Edison)

A

4 min

Meraculous SGA ABySS 960 Ray 960 HipMer 960 HipMer 20K -
Contig only "f"ﬁl'“l

BERKELEY LAB

Science Impact: HipMer is transformative

« Human genome (3Gbp) “de novo” assembled :
—Meraculous: 48 hours

—HipMer: 4 minutes (720x speedup
relative to Meraculous)

 Wheat genome (17 Gbp) “de novo™ assembled (2014):
—Meraculous (did not run):

-HipMer: 39 minutes; 15K cores (first all-in-one
assembly)

* Pine genome (20 Gbp) “de novo” assembled (2014) :
—-Masurca : 3 months; 1 TB RAM
* Wetland metagenome (1.25 Tbp) analysis (2015):
—Meraculous (projected): 15 TB of memory
-HipMER: Strong scaling to over 100K cores
(contig gen only)

A4S Georganas, Buluc, Chapman, Oliker, Rokhsar, Yelick,
N DEG [Aluru,Egan,Hofmeyr] in SC14, IPDPS15, SC15 21

Makes unsolvable
problems solvable!

UPC++: PGAS with “Mixins”

« UPC++ uses templates (no compiler
needed)

shared_var<int> s;
global ptr<LLNode> g;

shared_array<int> sa(8); 16 S x: 5 /%** x: 7
« Default execution model is SPMD, but / y: / y: 0
« Remote procedure calls, async 18 / '5 - 63 27
async(place) (Function f, T1 argl,..); ./ ‘\\
wait(); // other side does poll(); st o
PO p p2

« Teams for hierarchical
algorithms and machines

teamsplit (team) { ... }

» Interoperability is key; UPC++ can be use with OpenMP or MPI

ey «pC o

UPC++ Performance Close to UPC

UPC++ is a library, not a compiled language, yet
performance is comparable

GUPS (fine-grained) Performance on MIC and BlueGene/Q

MIC BlueGene/Q
Giga Updates Per Second 100 - Giga Updates Per Second
1.00 - | -
=@=UPC++ “W=UPC++ "
010] 14 /_
UPC UPC ,
0.10 " >
P & 001 - /r_/_
) o 4
.01 -
- 0.00 :S.- -~
’—
OOO T T T T T T) 000 T T T T T T T T |
1 2 4 8 16 32 60 R R N B
— N < ©
Num. of Processes Num. of Processes

Difference between UPC++ and

UPC is about 0.2 us (~220 cycles) g
R PZ6AS el

Application Challenge: Data Fusion in UPC++

« Seismic modeling for energy applications “fuses” observational
data into simulation
« With UPC++ “matrix assembly” can solve larger problems

First ever sharp, three-dimensional scan of Earth’s interior that conclusively connects plumes
of hot rock rising through the mantle with surface hotspots that generate volcanic island chains
like Hawaii, Samoa and Iceland.

French and Romanowicz use code with UPC++ phase to compute first ever whole-mantle

' global tomographic model using numerical seismic wavefield computations (F & R, 2014, 0
GJ, extending F et al., 2013, Scier24). coeee]
L BERKELEY LAB

Application Challenge: Data Fusion in UPC++

100 —

Strong Scaling (NERSC Edison)

—_ ===

X :

c

Q2

L : : : : :

Y : : : : :

9

© | | | | |

) : : :

.E >0l m—a l.le5x1l.le5(45GB) | =

% B—l 2.2e5 x 2.2e5 (180 GB)

("2 B—l 8.2e5 x 8.2e5 (2.5 TB) | |
"8 192 768 3072 12288

Cores

Distributed Matrix Assembly

« Remote asyncs with user-controlled resource management
« Remote memory allocation

« Team idea to divide threads into injectors / updaters

« 6x faster than MPI 3.0 on 1K nodes

- Improving UPC++ team support

' See French et al, IPDPS 2015 for parallelization overview. .
A
P BERKELEY LAB

Load Balancing and Irregular Matrix Transpose

« Hartree Fock example (e.g., in NWChem)

* Inherent load imbalance Increase scalability!

« UPC++
» Work stealing and fast atomics
 Distributed array: easy and fast transpose

* Impact
« 20% faster than the best existing solution
(GTFock with Global Arrays)

0 1 2 3

Distributed Array 4 S 6 7/

78 9 10 | 11

Local Array/
12 13 14 15

upQ David Ozog , Amir Kamil , Yili Zheng, Paul Hargrove , Jeff R. Hammond, Allen Malony,
Wibe de Jong, Katherine Yelick

Hartree Fock Code in UPC++

128-0 T T 1 T T Ll T T T 1 1 T

64.0

32.0

1

16.0}

8.0

4.0

208 __ Ideal

1.0} ®@ GTFock - alkane
—® UPC++ - alkane
0.5F A—a GTFock - DNA 5mer
—¢ UPC++ - DNA S5mer

Seconds per Fock build (ave.)

o) © 3 ™ > © 4% ™ > © % ™
™ %) O > © %) A % o) A \2) Q
N %) A e} Q ~N %% e} X %)
SR YN AR SO MRS
Cores

Strong Scaling of UPC++ HF Compared to GTFock with Global Arrays on
NERSC Edison (Cray XC30)

upQ David Ozog , Amir Kamil , Yili Zheng, Paul Hargrove , Jeff R. Hammond, Allen Malony,
Wibe de Jong, Katherine Yelick

UPC++ Communication Speeds up AMR

« Adaptive Mesh Refinement
on Block-Structured Meshes

—-Used in ice sheet modeling,
climate, subsurface (fracking),

FillBoundary Test on 2048 Cori Cores h’ -
T T T

1.13 | ’

N Better
ol 052 | Hierarchical UPC++ (distributed /
1 | shared style)
| |« UPC++ plus UPC++ is 2x faster
i | than MPI plus OpenMP

Renormalized Time
o o
D oo

o
=~

<
o

« MPI + MPI also does well

e
o

N RS R S

-3
A
rrrrrrr |'"|

BERKELEY LAB

S
.

Beyond Put/Get: Event-Driven Execution

 DAG Scheduling in a distributed (partitioned) memory context
« Assignment of work is static; schedule is dynamic
» Ordering needs to be imposed on the schedule

— Critical path operation: Panel Factorization

» General issue: dynamic scheduling in partitioned memory
— Can deadlock in memory allocation

- “memory constrained” lookahead
ry ained: lookahea Uses a Berkeley extension to

UPC to remotely synchronize

P

O

some edges omitted

~
A
u 7aYa) | rrrrrrr |"'|
T r=v)

-EEEE

BERKELEY LAB

symPACK: Sparse Cholesky

‘e
. Processor list:
ee Po|P1|P2]| P3
.QO..
eoe
o000
00000
....::.
(X) o000
00000
o0 000000 @
o0 0000000
(X) ...O0.00:.
-3
00000 @
000000
0000000
000000 0000
000000 00000
o0 +++000
o0 +++ 0000
oo 44488883
b)) Supernodal elimination tree of
(a) Structure of Cholesky factor L (jatrix A

« Sparse Cholesky using fan-both algorithm in UPC++

—-Uses asynchronous tasks with dependencies o
UP " \atthias Jacquelin, Yili Zheng, Esmond Ng, Katherine Yelick)

symPACK: Sparse Cholesky

Run times on boneS10 for three variants of symPACK

@@ sympPACK- Push

V=¥ symPACK- Pull
A7\ symPACK- Pull dynamic scheduling

10t

Time (s)

100 L

N % P> oy & Y q:ob (b(bv
Processor count

Figure 7: Impact of communication strategy and scheduling
on symPACK performance

 Scalability of symPACK on Cray XC30 (Edison)
— Comparable or better than best solvers (evaluation in progress)
— Notoriously hard parallelism problem

leb u Matthias Jacquelin, Yili Zheng, Esmond Ng, Katherine Yelick -

-3
A
rrrrrrr |"'|

Common Pattern for Distributed Data Structures

 Many UPC programs avoid the UPC style arrays in
factor of directories of objects

typedef shared [] double *sdblptr;
shared sdblptr directory[THREADS];

directory[i]=upc alloc(local size*sizeof (double));

e ® L > direCtory E ;
A S N *\L\' LS ;fz
~ /
physical and
» These are also more general: conceptual

 Multidimensional, unevenly distributed ;@Oaﬂay
* Ghost regions around blocks

i

-3
A
rrrrrrr |"'|

BERKELEY LAB

Summary: PGAS for Irregular Applications

* Lower overhead of communication makes PGAS useful for
latency-sensitive problems or bisection bandwidth problems

» Specific application characteristics that benefit:
-Fine-grained updates (Genomics HashTable construction)
—-Latency-sensitive algorithms (Genomics DFS)
-Distributed task graph (Cholesky)
-Work stealing (Hartree Fock)
—Irregular matrix assembly / transpose (Seismic, HF)
-Medium-grained messages (AMR)
—All-to-all communication (FFT)

* There are also benefits of thinking algorithmically in this
model: parallelize things that are otherwise hard to imagine

upC

Summary: PGAS for Modern HPC Systems

* The lower overhead of communication is also important
given current machine trends

-Many lightweight cores per node (do not want a hefty
serial communication software stack to run on them)

-RDMA mechanisms between nodes (decouple
synchronization from data transfer)

- GAS on chip: direct load/store on chip without full
cache coherence across chip

—-Hierarchical machines: fits both shared and distributed
memory, but supports hierarchical algorithms

—~New models of memory: High Bandwidth Memory on
chip or NVRAM above disk

Installing Berkeley UPC++, UPC, and GASNet

Available on Mac OSX, Linux, Infiniband clusters, Ethernet
clusters, and most HPC systems

« UPC++ Open source with BSD license
https://bitbucket.org/upcxx

« UPC++ installation
https://bitbucket.org/upcxx/upcxx/wiki/lnstalling%20UPC++
« GASNet communication

https://gasnet.lbl.gov
« Examples

-DAXPY, Conjugate Gradient, FFT, GUPS,
MatrixMultiply, Mutigrid, Minimum Degree Ordering,
Sample Sort, Sparse Matrix-Vector mutliply

up(C

Using Berkeley UPC at NERSC or ALCF

| oad the bupc module via
module load bupc

Compile code with the upcc
upcc -V // shows version

Add the following line to your ~/.soft file:

PATH += /home/projects/pgas/berkeley_upc-
2.22.3/V1R2M2/gcc-narrow/bin/

OR, if using the xl compilers, add:

PATH += /home/projects/pgas/berkeley_upc-
2.22.3/VIR2M2/x1c-narrow/bi

Run Argonne =
r'ESO'Ft NATIONAL LABORATORY

Compile with upcc. To see the version and configuration, run

upcc -V

BERKELEY LAB

~

| BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

up(

UPC++ V1.0
A C++ Library for Lightweight
PGAS Programing

Led by Scott B. Baden and Paul Hargrove (LBNL)
Presented by Amir Kamil (LBNL/University of Michigan)

up

UPC++ V1.0 Overview

* A complete redesign of UPC++ that leverages GASNet-
EX to deliver better performance and scalability

* A “compiler-free” approach for PGAS
-Leverage C++ standards and compilers
—Influence future directions of the C++ standard

* Interoperates with existing programming systems
-1-to-1 mapping between MPI| rank and UPC++ rank

-OpenMP and CUDA can be easily mixed with
UPC++ in the same way as MPI+X
» Design philosophy:
All communication is explicit
Most operations are non-blocking to encourage
asynchronous programming
No non-scalable data structures

Hello World in UPC++

* [f you compile and run a UPC++ program with P ranks, it
will run P copies of the program

« However, need to initialize UPC++ before calling any
UPC++ functions:

#include <upcxx/upcxx.hpp> // UPC++ header
#include <iostream>
int main(int argc, char **argv) {

upcxx::init () ; // Start UPC++ state
std: :cout << "Hello world from rank "
<< upcxx::rank me () // Who am I?
<< std::endl;
upcxx: :finalize () ; // Close down UPC++ state

upC e

BERKELEY LAB

The API

* Foundational types
-Global Pointers
-Futures (and promises)
-Distributed Objects

« Communication

-1-sided Communication

rput/rget (bulk and single element), non-contiguous
transfers, memory kinds

-RPC (remote procedure call)
 Callbacks
 Remote Atomics
« Teams (mechanism for grouping ranks together)
* Progress and the Memory Model

upl

Example: Monte Carlo Pi Calculation

» Estimate Pi by throwing darts at a unit square
 Calculate percentage that fall in the unit circle
—-Area of square =r2 = 1
—Area of circle quadrant = ¥4 * n r? = /4
« Randomly throw darts at x,y positions

« If X2 + y? < 1, then point is inside circle
« Compute ratio:

—# points inside / # points total

- 1 = 4"ratio

up(C

r =1

Pi in UPC++

* Independent estimates of pi:

int main(int argc, char **argv) {

up(C'

upcxx: :init () ;

int hits, trials = O0;
double pi;

Each rank gets its own
copy of these variables

if (argc !'= 2) trials = 1000000; | Each rank can use
else trials = atoi(argv[1]); input arguments

Initialize random in

srand (upcxx: :rank me () *17) ;

math library

for (int i=0; i < trials;
pi = 4.0*hits/trials;

cout << "PI estimated to " << pi << endl;

i++) hits += hit();

upcxx: :finalize ()

' Each rank calls “hit” separately

-3
A
rrrrrrr ""|

BERKELEY LAB

Helper Code for Pi in UPC++

* Required includes:
#include <iostream>
#include <cstdlib>
#include <upcxx/upcxx.hpp>

* Function to throw dart and calculate where it hits:
int hit() {
double x = ((double) rand()) / RAND MAX;
double y = ((double) rand()) / RAND MAX;
if (x*x + y*y <= 1.0) {
return 1;
} else {

return 0O;

up(e

BERKELEY LAB

C++11 Helper Code for Pi

* Required includes and variables:
#include <iostream>
#include <random>
#include <upcxx/upcxx.hpp>
default random engine generator;
uniform real distribution<> dist (0.0, 1.0);

 Function to throw dart and calculate where it hits:

int hit() {
double x = dist (generator);

double y = dist (generator); UPC++ allows full use
if (x*x + y*y <= 1.0) { of the C++ Standard
return 1; Template Library
} else {
return O;

~
A
U (} rrrrrrr i
BERKELEY LAB

Private vs. Shared Memory in UPC++

* Normal C++ variables and objects are allocated in the
private memory space for each thread

 Memory from the shared space is allocated explicitly

global ptr<int> gptr = upcxx:: qualifier elided
new <int>(rank me()) ; from here on out
int mine; UPC++ names in green

« Shared memory can be accessed from a remote rank

Rank, Rank, Rank,
0
2]
5 Shared
T o 0 1 n are
NN \
=
g 7)) mine: mine: eoo mine: |||
[°) Private
O) gptr: 4 gptr: 1 gptr: 4

upC e

BERKELEY LAB

Futures

« UPC++ has no implicit blocking
-We underline blocking operations
* A future holds a sequence of values and a state (ready /
not ready)

« Waiting on the returned future lets user tailor degree of
asynchrony they desire

future<T> f1 = rget(gptrl); // asynchronous op
future<T> £2 = rget(gptr2);
// unrelated work...

bool ready = fl.ready(); // non-blocking poll
wait (£1) ; // block until future is ready
T t = fl.result(); // fails if not ready

upC e

BERKELEY LAB

One-Sided Communication

* Remote read
future<T> rget(global ptr<T> src);

* Remote write
future<> rput(T val, global ptr<T> dest);

- There is also a signaling version, that runs a handler
at the destination after rput operation is visible at the
target

« Support for non-contiguous transfers

A

s /‘; 1 data copy ‘ ‘\/
dstaddr T/
staadr
~ . , ; srcaddr

count[1] count[2]

count[0]
L—H I CT T ‘l (T 11 I CT T 1
, stride[0]) = A
up L [stride[1] » stridelevels=2 rTA}I |"'|

BERKELEY LAB

Pi in UPC++: Shared Memory Style

 Parallel computing of pi, but with a bug
int main(int argc, char **argv) {

init() ; divide work up evenly

int trials = atoi(argv([l])

int my trials = (trials+rank n()-1)/rank n();

global ptr<int> hits = broadcast
wait (broadcast (new <int>(0), 0)); pointer to

srand (rank me () *17) ; shared

for (int i=0; i < my trials; i++) { memory
int old hits = wait(rget(hits)); from rank 0
wait (rput(old hits+hit(), hits)) ;|accumulate hits

} block on

barrier() ; communication

if (rank me() == 0)

cout << "PI estimated to "
<< 4.0*(*hits.local())/trials;

finalize (),

upQ } What is the problem with this program? Pt

BERKELEY LAB

UPC++ Synchronization

« UPC++ has two basic forms of barriers:

— Barrier: block until all other threads arrive
barrier () ;

— Asynchronous barriers
future<> £ =

barrier async(); //this thread is ready for barrier

// do computation unrelated to barrier
wait (£f) ; // wait for others to be ready

« Shared data can be synchronously updated by
sending the update to the owner as an RPC (remote
procedure call)

up(

-3
A
rrrrrrr |"'|

BERKELEY LAB

Remote Procedure Call

future<R> rpc(intrank t r,
F func, Argsé&&... args);
-Executes func(args...) onrank r and returns the
result
-R is the return type of func

« Empty future if func returns void

—-There is also a ‘fire and forget’ version that returns
no result

-Some restrictions apply to what UPC++ operations
can be issued in an RPC: the restricted context

« Limits on blocking operations from within an RPC

upC e

BERKELEY LAB

Pi in UPC++: RPC

« RPC used to synchronize updates
int hits = 0;|RPC can refer to global variable

int main(int argc, char **argv) {

init () ;
int trials = atoi(argv([l1l]):
int my trials = (trials+rank n()-1)/rank n();

srand (rank me () *17) ;
for (int i=0; i1 < my trials; i++) {
wait(rpc (0, [](int hit) { hits += hit; },

hit())):;
} send update to rank 0
barrier() ; block on the update
if (rank me() == 0)

cout << "PI estimated to " << 4.0*hits/trials;
finalize () ;

upC'’ e

BERKELEY LAB

Pi in UPC++: Data Parallel Style w/ Collectives

* The previous version of Pi works, but is not scalable:
- Updates are serialized on rank 0, ranks block on updates

« Use a reduction for better scalability:

upl

//

no global variables or shared memory

int main(int argc, char **argv) {

for (int i=0; i1 < my trials; i++)
my hits += hit();

my hits = // input, binary op
wait (allreduce(my hits, std::plus<int>));

// barrier implied by reduction

if (rank me() == 0)
cout << "PI: " << 4.0*my hits/trials;
finalize() ;

-3
A
rrrrrrr |"'|

BERKELEY LAB

Distributed Objects

* Any C++ type can be made into a distributed object
* One instance on every rank of a team

class Mesh { public: Mesh(A, B, C); private: .. };

A a; B Db; C c;
dist object<Mesh> dmesh (myTeam, a, b, c);
dist object<int> counter(0); // over world team

- Collective over team, but not blocking
e Can access remote instances within team

auto fl = rpc (someRank,

[foo] (dist object<Mesh> &remote) {
remote->someFunction (foo0) ;
return remote->recalc(); },

dmesh) ;

future<int> £2 = fetch(counter, someRank) ;

-3
A
rrrrrrr |"'|

BERKELEY LAB

Pi in UPC++: Distributed Object Version

» Alternative fix to the race condition
 Have each rank update a separate counter:

-Do it in a distributed object, have one rank compute sum

int main(int argc, char **argv) {

... declarations and initialization code omitted
dist object<int> all hits(0);
for (int i=0; i < my trials; i++)
*all hits += hit(); | update element

all_hits
distributed
across all ranks

barrier () ; with local affinity
if (rank_me() == 0) { collect each
for (int i=0; i < rank n(); i++) rank's

hits += wait(fetch(all hits, i)) ;| contribution
cout << "PI estimated to " << 4.0*hits/trials;

}

finalize () ;

up(e

BERKELEY LAB

Distributed Objects in Stencil Code

« Communication in 1D stencil (nearest-neighbor

computation): -

int main(int argc, char **argv) { construct local grids
... declarations and initialization code omitted and distributed object
global ptr<double> my grid =

new array<int>(interior+2);

dist object<global ptr<double>> grids (my grid);
global ptr<double> left =

wait (fetch(grids, (rank me()+rank n()-1)%rank n()));
global ptr<double> right =

wait (fetch(grids, (rank me()+1l)%rank n()));

for (int i=0; i < timesteps; i++) { get pointers
future<double> f1 = rget(left+interior) ; to_neighbors'
future<double> £f2 = rget(right+l); grids
... wait on futures and do computation get ghost cells

upC e

} BERKELEY LAB

Summary

« UPC++ is a PGAS library that supports lightweight
communication over GASNet-EX

 Close to the metal performance, lean interface

- Trade offs to reduce overheads and increase
flexibility
« Asynchronous and explicit communication
Reduced consistency guarantees

 Advanced features not covered in talk:

-Promises, callbacks, remote atomics, progress,
memory model, teams

* V1.0 release targeted for September 30, 2017
-Will include programmer’s guide

upl

Acknowledgements

 Early work with UPC++ involved Yili Zheng, Amir Kamil,
Kathy Yelick, and others [IPDPS ‘14]

« Pagoda Project (GASNet-EX and UPC++): Scott B.
Baden (PI), Paul Hargrove (co-Pl), John Bachan, Dan
Bonachea, Steven Hofmeyer, Khaled Ibrahim, Mathias
Jacquelin, Amir Kamil, Brian van Straalen

 This research was supported by the Exascale
Computing Project (17-SC-20-SC), funded by the U.S.
Department of Energy

 UPC++ V1.0 draft specification available at
https://bitbucket.org/upcxx/upcxx

upC P

EEEEEEEEEEEEEEEEEEEEEEEE

up(

LBNL / UCB Collaborators
« Scott Baden

« John Bachan

 Dan Bonachea

» Paul Hargrove

» Steven Hofmeyr

« Khaled Ibrahim

» Mathias Jacquelin

* Amir Kamil*

* Brian van Straalen

* Yili Zheng*

* Eric Roman

« Marquita Ellis

» Costin lancu

* Michael Driscoll
Evangelos Georganas

up Q * Former LBNL/UCB

Penporn Koanantakool
Leonid Oliker

John Shalf

Erich Strohmaier
Samuel Williams Thanks!
Cy Chan

Didem Unat*

James Demmel

Scott French

Edgar Solomonik*

Eric Hoffman*

Wibe de Jong

External collaborators (& their teams!)

Vivek Sarkar, Rice
John Mellor-Crummey, Rice
Mattan Erez, UT Austin

>

A
reeeoeee] !

BERKELEY LAB

