
Optimization of Asynchronous
Communication Operations through Eager
Notifications
Amir Kamil and Dan Bonachea
Applied Mathematics and Computational Research Division
Lawrence Berkeley National Laboratory
https://upcxx.lbl.gov/

Paper: doi:10.25344/S42C71 Video: doi:10.25344/S4JC7C

https://upcxx.lbl.gov/
https://doi.org/10.25344/S42C71
https://doi.org/10.25344/S4JC7C

2

UPC++ overview
UPC++ uses a “Compiler-Free,” library approach
• UPC++ leverages C++ standards,

needs only a standard C++ compiler

Relies on GASNet-EX for low-overhead communication
• Efficiently utilizes network hardware, including RDMA
• Provides Active Messages on which UPC++ RPCs are built
• Enables portability (laptops to supercomputers)

Designed for interoperability
• Same process model as MPI, enabling hybrid applications
• OpenMP and CUDA can be mixed with UPC++ as in MPI+X

Kamil and Bonachea / UPC++ Eager Notifications / PAW-ATM21 / upcxx.lbl.gov

3

What does UPC++ offer?
Asynchronous behavior
• RMA: Remote Memory Access:

• Get/put/accumulate to a location in another address space
• Low overhead, zero-copy, one-sided communication

• RPC: Remote Procedure Call:
• Moves computation to the data

Design principles for performance
• All communication is syntactically explicit
• All communication is asynchronous: futures and promises
• Scalable data structures that avoid unnecessary replication

Kamil and Bonachea / UPC++ Eager Notifications / PAW-ATM21 / upcxx.lbl.gov

4

A Partitioned Global Address Space programming model
Global Address Space

• Processes may read and write shared segments of memory
• Global address space = union of all the shared segments

Partitioned

• Global pointers to objects in shared memory have an affinity to a particular process
• Explicitly managed by the programmer to optimize for locality

Kamil and Bonachea / UPC++ Eager Notifications / PAW-ATM21 / upcxx.lbl.gov

Process 0 Process 1 Process 2 Process 3

Global
address
space

Private
memory

x: 1
p:

x: 5
p:

x: 7
p:

l:

g:

l:

g:

l:

g:

Node 0 Node 1

5

Asynchronous RMA in UPC++

By default, all communication operations are split-phased
• Initiate operation
• Wait for completion

upcxx::global_ptr<int> gptr1 = ...;
upcxx::future<int> f1 =

upcxx::rget(gptr1);
// unrelated work...
int t1 = f1.wait();
upcxx::future<> f2 =

upcxx::rput(42, gptr1);

A UPC++ future holds values and a state: ready/not-ready
wait returns the result when the rget completes

Kamil and Bonachea / UPC++ Eager Notifications / PAW-ATM21 / upcxx.lbl.gov

NIC

CPU

NIC

CPU

123

123

SH
AR
ED

PR
IV
AT

E

6

Aggressive asynchrony via futures and callbacks
RMA returns a future object, which represents an operation that may or may not
be complete

Callbacks can be chained through calls to then()

Multiple futures can be conjoined with when_all() into a single future that
encompasses all their results.

This code gets two remote values (an int and a double) and puts their product to
another location:

global_ptr<int> source_i = ...;
global_ptr<double> source_d = ...;
global_ptr<double> target = ...;
future<int> fut1 = rget(source_i);
future<double> fut2 = rget(source_d);
future<int, double> conj = when_all(fut1, fut2);
future<> res = conj.then([target](int a, double b) {

return rput(a*b, target);
});

Kamil and Bonachea / UPC++ Eager Notifications / PAW-ATM21 / upcxx.lbl.gov

rget(source_i) rget(source_d)

then()

when_all(…)

res

rput(a*b)a,b

fut1 fut2

conj

7

Completion: synchronizing communication
Communication can be synchronized using futures:

future<int> fut = rget(remote_gptr);
int result = fut.wait();

This is just the default form of synchronization
• Most communication ops take a defaulted completion argument
• More explicitly: rget(gptr, operation_cx::as_future());

• Requests future-based notification of operation completion

Other completion arguments may be passed to modify behavior
• Can trigger different actions upon completion, e.g.:

• Signal a promise (the producer side of a future), deliver an RPC, etc.
• Can even combine several completions for the same operation

Kamil and Bonachea / UPC++ Eager Notifications / PAW-ATM21 / upcxx.lbl.gov

8

Progress and deferred notifications
UPC++ does not spawn hidden threads to advance its internal state or
track asynchronous communication

• Keeps the runtime lightweight and simplifies synchronization

Prior releases (2021.3.0 and earlier) required completion notifications to be
deferred until the next call into the progress engine

• Provides consistent behavior for code such as:

global_ptr<int> gptr = producer();
future<> f1 = rput(42, gptr);
future<> f2 = f1.then(... /* code block #1 */);
/* code block #2 */
f2.wait();

• Ensures that code block #2 executes before code block #1

Kamil and Bonachea / UPC++ Eager Notifications / PAW-ATM21 / upcxx.lbl.gov

9

Downsides of deferred notifications
Deferred notification can incur significant overheads for on-node accesses
• Future-based notification must allocate a promise cell on the heap, schedule it

to be fulfilled later
Programmers often do manual localization to avoid this:

global_ptr<double> gptr = ...;
if (gptr.is_local()) {

*(gptr.local()) = 42; // direct load/store access
// do overlappable computation

} else {
future<> fut = rput(42, gptr);
// do overlappable computation
fut.wait();

}

• Leads to code bloat, duplicates locality check that is already in the runtime

Kamil and Bonachea / UPC++ Eager Notifications / PAW-ATM21 / upcxx.lbl.gov

10

Eager notifications
New eager notification added in 2021.3.6 snapshot, included in most recent
2021.9.0 release

• Immediately signals notification for synchronous completion

New factory methods for requesting deferred or eager notification:

operation_cx::as_defer_future()
operation_cx::as_eager_future()
operation_cx::as_defer_promise(promise<T...> &p)
operation_cx::as_eager_promise(promise<T...> &p)

New macro to control whether as_future and as_promise request eager
or deferred notification

• If not defined, defaults to eager

Kamil and Bonachea / UPC++ Eager Notifications / PAW-ATM21 / upcxx.lbl.gov

11

Optimization of ready futures
Ready futures that do not encapsulate a value (i.e. future<>) are semantically
equivalent with each other

• Implementation optimized to use common, pre-allocated internals

When conjoining multiple futures, if the resulting values and readiness only come
from a single future, the result is semantically equivalent to that one input future

future<int, double> fut1 = ... /* not ready */;
future<> fut2 = ... /* ready */, fut3 = ... /* ready */;
auto result = when_all(fut1, fut2, fut3);

Optimizations significantly improve performance of loops that conjoin many
operations when most complete synchronously

future<> f = make_future();
for (int i = 0; i < 10; ++i)

f = when_all(f, rput(i, gptrs[i]));

Kamil and Bonachea / UPC++ Eager Notifications / PAW-ATM21 / upcxx.lbl.gov

12

Evaluation
Three versions of UPC++:

• 2021.3.0 release – most recent release prior to this work, used as control

• 2021.3.6 snapshot with deferred notifications

• 2021.3.6 snapshot with eager notifications

Benchmarks:

• Microbenchmarks: RMA and atomics

• GUPS: HPC Challenge RandomAccess benchmark

• Graph Matching: half-approximate maximum-weight matching

Experiments run on 3 systems on a single node, with 16 processes

• Only Intel Skylake results shown here; similar results on IBM Power9 and
Marvell ThunderX2 (see paper)

Kamil and Bonachea / UPC++ Eager Notifications / PAW-ATM21 / upcxx.lbl.gov

13

Microbenchmarks

Kamil and Bonachea / UPC++ Eager Notifications / PAW-ATM21 / upcxx.lbl.gov

RMA or atomic transfers of 64-bit data between co-located processes

Each experiment timed 10M
operations, initiating and then
immediately waiting on each
one

Average over 10 experiments

Observations:

• No performance regression
between 2021.3.0 and
2021.3.6

• Eager is 46-92% faster than
defer

Improvement over
2021.3.6 defer

G
ood

14

GUPS

Kamil and Bonachea / UPC++ Eager Notifications / PAW-ATM21 / upcxx.lbl.gov

Randomized fine-grained updates on distributed table

Several versions, using RMA
or atomics, with future or
promise notification

Observations:

• Eager is 3-15% faster than
defer when using promises

• 147-304% faster when using
futures due to skipping the
progress engine as well as
improvements to conjoining
ready futures

Improvement over
2021.3.6 defer

G
oo

d

15

Graph matching

Kamil and Bonachea / UPC++ Eager Notifications / PAW-ATM21 / upcxx.lbl.gov

Half-approximate maximum-weight matching from ExaGraph developers

Code optimizes updates to same process, but not to co-located processes

Experiments with four sparse graphs with varying degrees of locality from
SuiteSparse Matrix Collection1:

Additional graph randomly generated from the application itself, with ~13%
of the edges between random vertices

• Channel • Delaunay • Venturi • Youtube

1Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix Collection. ACM
Transactions on Mathematical Software 38, 1, Article 1 (December 2011), 25 pages. DOI:
https://doi.org/10.1145/2049662.2049663. Graphs and images obtained from https://sparse.tamu.edu.

https://suitesparse-collection-website.herokuapp.com/files/DIMACS10/delaunay_n21.png
https://suitesparse-collection-website.herokuapp.com/files/DIMACS10/venturiLevel3.png
https://suitesparse-collection-website.herokuapp.com/files/SNAP/com-Youtube.png
https://doi.org/10.1145/2049662.2049663
https://sparse.tamu.edu/

16

Graph matching results

Kamil and Bonachea / UPC++ Eager Notifications / PAW-ATM21 / upcxx.lbl.gov

RMA-based UPC++ implementation by Sayan Ghosh (mel-upx)

Observations:

• Speedup limited by how
much of the time is spent in
communication, and what
fraction is between different
processes

• ~5% improvement for
graphs with medium
locality, 11% for graph with
higher fraction of updates
to co-located processes

Improvement over
2021.3.6 defer

G
ood

17

Conclusions
The PGAS model enables the same code to operate on both on-node and
off-node memory

• Provides productivity and maintainability

Asynchronous PGAS systems need to ensure that mechanisms for
asynchrony only minimally impact performance of on-node operations

For UPC++, eager notifications provide significantly better performance
than deferred notifications for on-node operations

• Up to 10x speedup for microbenchmarks, 3x for GUPS, 1.11x for graph
matching on Intel Skylake

• Even higher speedups on other platforms (see paper)

Ongoing work in UPC++ to further optimize on-node operations

Kamil and Bonachea / UPC++ Eager Notifications / PAW-ATM21 / upcxx.lbl.gov

18

Acknowledgements
This research was supported in part by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of two U.S. Department of Energy organizations (Office of Science and the
National Nuclear Security Administration) responsible for the planning and preparation of a capable
exascale ecosystem, including software, applications, hardware, advanced system engineering and
early testbed platforms, in support of the nation’s exascale computing imperative.

This research used resources of the National Energy Research Scientific Computing Center
(NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No.
DE-AC02-05CH11231, as well as This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

Yelick, Kamil, Rouson / UPC++ / SC21 Tutorial / upcxx.lbl.gov

Thank you!

	Optimization of Asynchronous Communication Operations through Eager Notifications
	UPC++ overview
	What does UPC++ offer?
	A Partitioned Global Address Space programming model
	Asynchronous RMA in UPC++
	Aggressive asynchrony via futures and callbacks
	Completion: synchronizing communication
	Progress and deferred notifications
	Downsides of deferred notifications
	Eager notifications
	Optimization of ready futures
	Evaluation
	Microbenchmarks
	GUPS
	Graph matching
	Graph matching results
	Conclusions
	Acknowledgements

