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UPC++ overview
UPC++ uses a “Compiler-Free,” library approach
• UPC++ leverages C++ standards,

needs only a standard C++ compiler

Relies on GASNet-EX for low-overhead communication
• Efficiently utilizes network hardware, including RDMA
• Provides Active Messages on which UPC++ RPCs are built
• Enables portability (laptops to supercomputers)

Designed for interoperability
• Same process model as MPI, enabling hybrid applications
• OpenMP and CUDA can be mixed with UPC++ as in MPI+X
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What does UPC++ offer?
Asynchronous behavior
• RMA: Remote Memory Access:

• Get/put/accumulate to a location in another address space
• Low overhead, zero-copy, one-sided communication

• RPC: Remote Procedure Call:
• Moves computation to the data

Design principles for performance
• All communication is syntactically explicit
• All communication is asynchronous: futures and promises
• Scalable data structures that avoid unnecessary replication
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A Partitioned Global Address Space programming model
Global Address Space

• Processes may read and write shared segments of memory
• Global address space = union of all the shared segments

Partitioned

• Global pointers to objects in shared memory have an affinity to a particular process
• Explicitly managed by the programmer to optimize for locality
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Asynchronous RMA in UPC++

By default, all communication operations are split-phased
• Initiate operation
• Wait for completion 

upcxx::global_ptr<int> gptr1 = ...;
upcxx::future<int> f1 = 

upcxx::rget(gptr1);
// unrelated work...
int t1 = f1.wait();
upcxx::future<> f2 = 

upcxx::rput(42, gptr1);

A UPC++ future holds values and a state: ready/not-ready
wait returns the result when the rget completes
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Aggressive asynchrony via futures and callbacks
RMA returns a future object, which represents an operation that may or may not 
be complete

Callbacks can be chained through calls to then()

Multiple futures can be conjoined with when_all() into a single future that 
encompasses all their results.

This code gets two remote values (an int and a double) and puts their product to 
another location:

global_ptr<int>     source_i = ...;
global_ptr<double>  source_d = ...;
global_ptr<double>  target  = ...;
future<int>         fut1 = rget(source_i);
future<double>      fut2 = rget(source_d);
future<int, double> conj = when_all(fut1, fut2);
future<> res = conj.then([target](int a, double b) {

return rput(a*b, target);
});
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Completion: synchronizing communication
Communication can be synchronized using futures:

future<int> fut = rget(remote_gptr);
int result = fut.wait();

This is just the default form of synchronization
• Most communication ops take a defaulted completion argument
• More explicitly: rget(gptr, operation_cx::as_future());

• Requests future-based notification of operation completion

Other completion arguments may be passed to modify behavior
• Can trigger different actions upon completion, e.g.:

• Signal a promise (the producer side of a future), deliver an RPC, etc.
• Can even combine several completions for the same operation
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Progress and deferred notifications
UPC++ does not spawn hidden threads to advance its internal state or 
track asynchronous communication

• Keeps the runtime lightweight and simplifies synchronization

Prior releases (2021.3.0 and earlier) required completion notifications to be 
deferred until the next call into the progress engine

• Provides consistent behavior for code such as:

global_ptr<int> gptr = producer();
future<> f1 = rput(42, gptr);
future<> f2 = f1.then(... /* code block #1 */);
/* code block #2 */
f2.wait();

• Ensures that code block #2 executes before code block #1
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Downsides of deferred notifications
Deferred notification can incur significant overheads for on-node accesses
• Future-based notification must allocate a promise cell on the heap, schedule it 

to be fulfilled later
Programmers often do manual localization to avoid this:

global_ptr<double> gptr = ...;
if (gptr.is_local()) {

*(gptr.local()) = 42; // direct load/store access
// do overlappable computation

} else {
future<> fut = rput(42, gptr);
// do overlappable computation
fut.wait();

}

• Leads to code bloat, duplicates locality check that is already in the runtime

Kamil and Bonachea / UPC++ Eager Notifications / PAW-ATM21 / upcxx.lbl.gov



10

Eager notifications
New eager notification added in 2021.3.6 snapshot, included in most recent 
2021.9.0 release

• Immediately signals notification for synchronous completion

New factory methods for requesting deferred or eager notification:

operation_cx::as_defer_future()
operation_cx::as_eager_future()
operation_cx::as_defer_promise(promise<T...> &p)
operation_cx::as_eager_promise(promise<T...> &p)

New macro to control whether as_future and as_promise request eager 
or deferred notification

• If not defined, defaults to eager

Kamil and Bonachea / UPC++ Eager Notifications / PAW-ATM21 / upcxx.lbl.gov



11

Optimization of ready futures
Ready futures that do not encapsulate a value (i.e. future<>) are semantically 
equivalent with each other

• Implementation optimized to use common, pre-allocated internals

When conjoining multiple futures, if the resulting values and readiness only come 
from a single future, the result is semantically equivalent to that one input future

future<int, double> fut1 = ... /* not ready */;
future<> fut2 = ... /* ready */, fut3 = ... /* ready */;
auto result = when_all(fut1, fut2, fut3);

Optimizations significantly improve performance of loops that conjoin many 
operations when most complete synchronously

future<> f = make_future();
for (int i = 0; i < 10; ++i)

f = when_all(f, rput(i, gptrs[i]));
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Evaluation
Three versions of UPC++:

• 2021.3.0 release – most recent release prior to this work, used as control

• 2021.3.6 snapshot with deferred notifications

• 2021.3.6 snapshot with eager notifications

Benchmarks:

• Microbenchmarks: RMA and atomics

• GUPS: HPC Challenge RandomAccess benchmark

• Graph Matching: half-approximate maximum-weight matching

Experiments run on 3 systems on a single node, with 16 processes

• Only Intel Skylake results shown here; similar results on IBM Power9 and 
Marvell ThunderX2 (see paper)
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Microbenchmarks
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RMA or atomic transfers of 64-bit data between co-located processes

Each experiment timed 10M
operations, initiating and then
immediately waiting on each
one

Average over 10 experiments

Observations:

• No performance regression
between 2021.3.0 and
2021.3.6

• Eager is 46-92% faster than
defer

Improvement over 
2021.3.6 defer

G
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GUPS
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Randomized fine-grained updates on distributed table

Several versions, using RMA
or atomics, with future or
promise notification

Observations:

• Eager is 3-15% faster than
defer when using promises

• 147-304% faster when using
futures due to skipping the
progress engine as well as
improvements to conjoining
ready futures

Improvement over 
2021.3.6 defer
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Graph matching
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Half-approximate maximum-weight matching from ExaGraph developers

Code optimizes updates to same process, but not to co-located processes

Experiments with four sparse graphs with varying degrees of locality from 
SuiteSparse Matrix Collection1:

Additional graph randomly generated from the application itself, with ~13% 
of the edges between random vertices

• Channel • Delaunay • Venturi • Youtube

1Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix Collection. ACM 
Transactions on Mathematical Software 38, 1, Article 1 (December 2011), 25 pages. DOI: 
https://doi.org/10.1145/2049662.2049663. Graphs and images obtained from https://sparse.tamu.edu.

https://suitesparse-collection-website.herokuapp.com/files/DIMACS10/delaunay_n21.png
https://suitesparse-collection-website.herokuapp.com/files/DIMACS10/venturiLevel3.png
https://suitesparse-collection-website.herokuapp.com/files/SNAP/com-Youtube.png
https://doi.org/10.1145/2049662.2049663
https://sparse.tamu.edu/
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Graph matching results
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RMA-based UPC++ implementation by Sayan Ghosh (mel-upx)

Observations:

• Speedup limited by how
much of the time is spent in
communication, and what
fraction is between different
processes

• ~5% improvement for
graphs with medium
locality, 11% for graph with
higher fraction of updates
to co-located processes

Improvement over 
2021.3.6 defer

G
ood
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Conclusions
The PGAS model enables the same code to operate on both on-node and 
off-node memory

• Provides productivity and maintainability

Asynchronous PGAS systems need to ensure that mechanisms for 
asynchrony only minimally impact performance of on-node operations

For UPC++, eager notifications provide significantly better performance 
than deferred notifications for on-node operations

• Up to 10x speedup for microbenchmarks, 3x for GUPS, 1.11x for graph 
matching on Intel Skylake

• Even higher speedups on other platforms (see paper)

Ongoing work in UPC++ to further optimize on-node operations
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