
The UPC++ PGAS library for Exascale Computing
Extended Abstract

John Bachan, Dan Bonachea, Paul H. Hargrove, Steve Hofmeyr,
Mathias Jacquelin, Amir Kamil, Brian van Straalen, Scott B. Baden

pagoda@lbl.gov
Computational Research Division, Lawrence Berkeley National Laboratory

Berkeley, CA

ABSTRACT

We describe UPC++ V1.0, a C++11 library that supports
APGAS programming. UPC++ targets distributed data struc-
tures where communication is irregular or fine-grained. The
key abstractions are global pointers, asynchronous program-
ming via RPC, and futures. Global pointers incorporate own-
ership information useful in optimizing for locality. Futures
capture data readiness state, are useful for scheduling and also
enable the programmer to chain operations to execute asyn-
chronously as high-latency dependencies become satisfied,
via continuations. The interfaces for moving non-contiguous
data and handling memories with different optimal access
methods are composable and closely resemble those used
in modern C++. Communication in UPC++ runs at close to
hardware speeds by utilizing the low-overhead GASNet-EX
communication library.

CCS CONCEPTS

• Software and its engineering → Parallel program-
ming languages;Distributed programming languages;
Concurrent programming structures; Software libraries
and repositories;

KEYWORDS

PGAS, Global Address Space, UPC++, Exascale computing

ACM Reference Format:
John Bachan, Dan Bonachea, Paul H. Hargrove, Steve Hofmeyr,

Mathias Jacquelin, Amir Kamil, Brian van Straalen, Scott B.

Baden. 2017. The UPC++ PGAS library for Exascale Computing:
Extended Abstract. In PAW17: Second Annual PGAS Applications

Workshop, November 12–17, 2017, Denver, CO, USA. ACM, New

York, NY, USA, 4 pages. https://doi.org/10.1145/3144779.3169108

1 INTRODUCTION

UPC++ [2, 3] is a C++11 library that supports Asynchronous
Partitioned Global Address Space (APGAS) programming.
UPC++ is well-suited for implementing elaborate distributed

Publication rights licensed to ACM. ACM acknowledges that this
contribution was authored or co-authored by an employee, contractor
or affiliate of the United States government. As such, the Government
retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for Government purposes only.

PAW17, November 12–17, 2017, Denver, CO, USA

© 2017 Copyright held by the owner/author(s). Publication rights
licensed to Association for Computing Machinery.
ACM ISBN 978-1-4503-5123-2/17/11. . . $15.00
https://doi.org/10.1145/3144779.3169108

data structures where communication is irregular or fine-
grained. The UPC++ interfaces for moving non-contiguous
data and handling memories with different optimal access
methods are composable and closely resemble those used in
modern C++.

The key abstractions in UPC++ are: (1) global pointers, that
enable the programmer to express ownership information for
improving locality, (2) asynchronous remote procedure call
(RPC) also known as function shipping, and (3) futures.
Futures enable the programmer to capture data readiness
state, which is useful in making scheduling decisions, or to
chain together high-latency operations, via continuations, to
execute asynchronously as dependencies become satisfied.

The UPC++ programmer can expect communication to run
at close to hardware speeds. To this end, UPC++ runs atop
the GASNet [4] communication library and takes advantage
of GASNet’s low-overhead communication as well as access
to any special hardware support, e.g. RDMA.

The UPC++ project began in 2012 with a prototype des-
ignated V0.1, described in [10]. We are revising the library
under the auspices of the United States Department of En-
ergy’s Exascale Computing Project, to meet the needs of
exascale applications requiring PGAS support. This paper
describes this new production version, V1.0, which adds sev-
eral features including a new asynchronous API.

2 UPC++ FEATURES AND DESIGN

UPC++ presents a SPMD programming model, wherein a
distributed-memory parallel computer is viewed as an ab-
stract collection of processing elements each with a local
memory (see Fig. 1). Each processing element is called a
rank, and the number of UPC++ ranks is fixed during program
execution.

Figure 1: PGAS logical memory model

https://doi.org/10.1145/3144779.3169108
https://doi.org/10.1145/3144779.3169108

PAW17, November 12–17, 2017, Denver, CO, USA
Bachan, Baden, Bonachea, Hargrove,

Hofmeyr, Jacquelin, Kamil, van Straalen

1 // C++ ” g l oba l ” v a r i a b l e s become rank−l o c a l s t a t e

2 std : : unordered map<i n t 64 t , upcxx : : g l oba l p t r<double> > my dht loca l ;

3

4 upcxx : : future<> i n s e r t d a t a (i n t 6 4 t key , const double ∗data p , s i z e t data cnt) {
5 re turn upcxx : : rpc (key % upcxx : : rank n () , // send the lambda to t h i s rank

6 [=] () { // t h i s code runs at the remote rank

7 // a l l o c a t e space in shared memory to hold the data (data cnt doubles)

8 upcxx : : g l oba l p t r<double> gpbuf = upcxx : : new array<double>(data cnt) ;

9 my dht loca l [key] = gpbuf ; // i n s e r t g l oba l po in t e r i n to hash tab l e

10 re turn gpbuf ; // respond by re tu rn ing bu f f e r l o c a t i o n

11 }
12) . then ([=] (upcxx : : g l oba l p t r<double> gpbuf) { // proce s s the re sponse at i n i t i a t o r

13 re turn upcxx : : rput (data p , gpbuf , data cnt) ; // RDMA: put data to the remote bu f f e r

14 }) ;
15 } // return value i s a fu tu r e r ep r e s en t i ng e n t i r e asynchronous opera t i on

Figure 2: A distributed hash table for variable-sized data in UPC++: insertion operation

As with other PGAS models, ranks can access their re-
spective local memories via conventional C++ pointers. In
addition, ranks have access to a global memory, which is al-
located in shared segments distributed over the ranks. Ranks
use global pointers to reference objects in any shared segment
and move data between them. As with threads programming,
references made via global pointers may be subject to race
conditions, and appropriate synchronization must generally
be employed.

UPC++ global pointers are fundamentally different from
conventional C-style pointers. A global pointer refers to a
location in a shared segment. It cannot be dereferenced using
the * operator, nor does it support conversions between point-
ers to base and derived types. It also cannot be constructed
by the address-of operator. On the other hand, UPC++ global
pointers do support some properties of a regular C pointer,
such as pointer arithmetic and passing a pointer by value.

Global pointers are notably used in one-sided Remote
Memory Access (RMA) communication operations (similar
to memcpy but across ranks) and in Remote Procedure Calls
(RPC). RPC enables the programmer to ship code to other
ranks, which is useful in managing irregular distributed data
structures. These ranks can push or pull data via global
pointers, which can refer to objects in any shared segment.

UPC++’s design philosophy is to provide “close to the metal
performance.” To meet this requirement, wherever possible,
UPC++ will engage low-level hardware support for communi-
cation and this capability is crucial to UPC++’s support of
lightweight communication. In addition, UPC++ imposes cer-
tain restrictions. In particular, non-blocking communication
is the default for nearly all operations defined in the API,
and all communication is explicit. These two restrictions en-
courage the programmer to write code that is performant and
make it more difficult to write code that is not. The commu-
nication model closely matches the unordered delivery and
RMA semantics of modern RDMA network hardware, unlike

two-sided message passing. The increased semantic flexibility
improves the possibility of overlapping communication and
scheduling it appropriately.

Fig. 2 demonstrates several of the core UPC++ features
used to implement an asynchronous insertion operation for
a distributed hash table storing variable-sized data. Each
rank uses a C++ std::unordered map to manage its local
partition of the hash table (line 2). The insertion operation
begins at line 5 by hashing the provided key to a unique
rank id in the parallel job whose partition will hold the
inserted value (upcxx::rank n() returns the number of ranks
in the job). An RPC is injected to that rank, where upon
arrival the code provided by the C++ lambda body on
lines 8-10 will execute. Line 8 allocates space in the shared
segment of the target rank sufficient to hold the value array
(whose element count data cnt was captured by the lambda
expression and traveled as part of the RPC). The resulting
global ptr<double> gpbuf is a global pointer that can be
used by any rank to access the shared buffer. This global
pointer is inserted into the local partition of the hash table
on line 9, to allow later retrieval by a hash table lookup
operation (omitted due to space constraints). The global
pointer is also returned from the lambda on line 10, where
it will travel back to the initiating rank as a response to the
RPC.

The rpc() expression is non-blocking and yields a UPC++

future of type future<global ptr<double>> to the initiator.
Line 12 uses that future’s .then() method to schedule a con-
tinuation for processing the RPC’s eventual response. This
continuation is a C++ lambda expression that will execute
at the initiating rank and receive the RPC response value
gpbuf. The lambda body at line 13 uses upcxx::rput() to
inject a one-sided RMA put operation that transfers the
data payload from the local input buffer to its final location
(specified by gpbuf) in the shared segment of the target rank.
This put operation is itself non-blocking and yields a UPC++

The UPC++ PGAS library for Exascale Computing PAW17, November 12–17, 2017, Denver, CO, USA

future that is returned from the lambda continuation, and
propagates outwards to the return of the overall insertion
function. Written in this manner, the insertion operation
is fully asynchronous, and will return a future<> to the
caller immediately after initial injection of the RPC, without
blocking. The caller uses that future to later synchronize
completion of the entire insertion operation, potentially over-
lapping unrelated work during the communication latencies.
This demonstrates the highly-asynchronous coding style that
UPC++ enables and encourages.

UPC++ avoids non-scalable constructs found in other PGAS
systems such as UPC. For example, it does not provide
distributed shared arrays nor shared scalars. Instead, it pro-
vides distributed objects, which can be used to similar ends.
Distributed objects are useful in scalably solving the boot-
strapping problem, whereby ranks need to distribute their
local copies of global pointers to other ranks. Though UPC++

does not directly provide multidimensional arrays, applica-
tions that use UPC++ may define them. To this end, UPC++
supports non-contiguous one-sided RMA for vector, indexed,
and strided data.

The design of UPC++ avoids introducing hidden threads
inside the runtime. The strengths of this approach are im-
proved user-visibility into the resource requirements of UPC++
and better interoperability with software packages and their
possibly restrictive threading requirements. The consequence,
however, is that the user must be conscientious to balance the
need for making progress (via explicit library calls) against
the application’s need for CPU cycles.

Ranks may be grouped into teams. A team can participate
in collective operations. Teams are also the interface used
by UPC++ to expose the shared-memory capabilities of the
underlying system and can let a programmer reason about
hierarchical processor-memory organization, enabling vari-
ous locality optimizations. UPC++ supports remote atomic
operations, currently on 32-bit and 64-bit integers. Atomics
are useful in managing distributed lock-free data structures.
Unlike C++11 atomics, UPC++ atomic operations are split-
phased, to encourage overlap of unrelated work during the
communication latency.

3 UPC++ PERFORMANCE BENEFITS

To demonstrate the benefits of UPC++, we present early re-
sults with a direct linear solver for sparse symmetric matrices,
symPACK [7]. Sparse solvers are key to the solution of nu-
merous science problems, and are well-known for their high
communication-to-computation ratio. This makes it chal-
lenging to achieve strong scalability on distributed-memory
platforms. SymPACK employs UPC++ one-sided communica-
tion to implement a pull strategy. In a direct solver, after
a column (or more precisely a supernode) is factored on a
given rank, a number of columns (or supernodes) need to be
updated. These columns may reside on remote ranks which
we refer to as recipients. In symPACK, the recipients are
responsible for fetching the data when they are ready to

24 48 96 14
4

19
2

26
4

38
4

57
6

76
8

Process count

101

102

T
im
e
(s
)

Run times for Flan 1565

MUMPS 5.1.2

PASTIX 5.2.3

symPACK

Figure 3: SymPACK/UPC++ vs. competing solvers

handle it. UPC++ allows global pointers to dynamically allo-
cated data to be transferred between ranks, which makes this
asynchronous pull strategy efficient and easy to implement.

We have conducted a preliminary strong scaling experi-
ment on the Flan 1565 input from the SuiteSparse matrix
collection [5] on NERSC Edison [8]. Each node is equipped
with two 12-core Intel Xeon Sandy-Bridge processors and 96
GB of RAM. We compare the performance of symPACK to
that of two state-of-the-art direct linear solvers for sparse
symmetric matrices: MUMPS 5.1.2 [1] and PaSTiX 5.2.3 [6].
Nested-dissection computed using SCOTCH [9] was used to
reorder the matrices to reduce the amount of fill. No pivoting
was used in the experiments, which were done using complex
arithmetic. Finally, multithreading was disabled in all solvers
as it provided no benefit for this particular sparse matrix.

Figure 3 depicts the strong scalability for the numerical
factorization of each solver. As can be seen, symPACK consis-
tently displays lower execution times than the other solvers
up to 768 cores (32 nodes), demonstrating the low overhead
of UPC++ and the efficiency of the one-sided pull strategy
it enables. The difference can be attributed to the use of
one-sided communication in combination with RPC. The
other two solvers communicate using non-blocking, two-sided
MPI message passing. A pull strategy would be awkward to
implement in a message-passing model. MPI RMA would not
remedy the expressibility gap due to its lack of support for
RPC.

4 CONCLUSIONS

UPC++ is intended for challenging applications that employ
fine-grained or irregular communication. UPC++’s support for
communication is lightweight, and will deliver hardware off-
load performance when available, through use of the GASNet-
EX communication layer.

UPC++ provides an APGAS programming model designed
for extreme scalability. Its benefits are primarily due to the
following attributes:

PAW17, November 12–17, 2017, Denver, CO, USA
Bachan, Baden, Bonachea, Hargrove,

Hofmeyr, Jacquelin, Kamil, van Straalen

∙ Concise and efficient support for distributed irregular
data structures in algorithms that move data at a
fine granularity, and that have a low computational
intensity.

∙ The ability to move data to code or code to data as best
suits the problem, without incurring high programming
overheads.

∙ The ability to execute all communication asynchronously
and schedule it to preserve dependencies.

∙ It leverages modern C++ features and interoperates
with MPI, OpenMP and other parallel and distributed
programming frameworks.

UPC++ is undergoing further development on additional fea-
tures, including memory kinds, subset teams and collectives.
We shall report on these in more detail at a later time.

5 ACKNOWLEDGMENTS

The UPC++ software is available at http://upcxx.lbl.gov.
GASNet is available at http://gasnet.lbl.gov.

This research was supported by the Exascale Comput-
ing Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the National
Nuclear Security Administration. Early development of UPC++
was supported by the Director, Office of Science, Office of
Advanced Scientific Computing Research, of the U.S. Depart-
ment of Energy under Contract No. DE-AC02-05CH11231.
This manuscript has been authored by an author at Lawrence
Berkeley National Laboratory under Contract No. DE-AC02-
05CH11231 with the U.S. Department of Energy.

REFERENCES
[1] P. Amestoy, I. Duff, J.-Y. L’Excellent, and J. Koster. 2001. A Fully

Asynchronous Multifrontal Solver Using Distributed Dynamic
Scheduling. SIAM J. Matrix Anal. and Appl. 23 (2001), 15–41.

[2] John Bachan, Scott B. Baden, Dan Bonachea, Paul H. Hargrove,
Steven Hofmeyr, Khaled Ibrahim, Mathias Jacquelin, Amir Kamil,
Bryce Lelbach, and Brian van Straalen. 2017. UPC++ Specifica-
tion, v1.0 Draft 4. Technical Report LBNL-2001066. Lawrence
Berkeley National Laboratory. http://escholarship.org/uc/item/
2nm9n3jm

[3] John Bachan, Scott B. Baden, Dan Bonachea, Paul H. Hargrove,
Steven Hofmeyr, Khaled Ibrahim, Mathias Jacquelin, Amir Kamil,
and Brian van Straalen. 2017. UPC++ Programmer’s Guide,
v1.0-2017.9. Technical Report LBNL-2001065. Lawrence Berkeley
National Laboratory. http://escholarship.org/uc/item/0nq2k8sx

[4] Dan Bonachea and Paul Hargrove. 2017. GASNet Specification,
v1.8.1. Technical Report LBNL-2001064. Lawrence Berkeley
National Laboratory. http://escholarship.org/uc/item/03b5g0q4

[5] T. A. Davis and Y. Hu. 2011. The University of Florida sparse
matrix collection. ACM Trans. Math. Software 38 (2011), 1.

[6] Pascal Hénon, Pierre Ramet, and Jean Roman. 2002. PASTIX:
a high-performance parallel direct solver for sparse symmetric
positive definite systems. Parallel Comput. 28, 2 (2002), 301–321.

[7] Mathias Jacquelin, Yili Zheng, Esmond Ng, and Katherine A.
Yelick. 2016. An Asynchronous Task-based Fan-Both Sparse
Cholesky Solver. CoRR abs/1608.00044 (2016). arXiv:1608.00044
http://arxiv.org/abs/1608.00044

[8] NERSC Edison system 2017. (2017). National Energy Re-
search Scientific Computing Center, http://www.nersc.gov/users/
computational-systems/edison/configuration.

[9] François Pellegrini and Jean Roman. 1996. SCOTCH: A software
package for static mapping by dual recursive bipartitioning of
process and architecture graphs. In High-Performance Computing
and Networking. Springer, 493–498.

[10] Y. Zheng, A. Kamil, M. B. Driscoll, H. Shan, and K. Yelick.
2014. UPC++: A PGAS Extension for C++. In 2014 IEEE 28th
International Parallel and Distributed Processing Symposium.
1105–1114. https://doi.org/10.1109/IPDPS.2014.115

http://upcxx.lbl.gov
http://gasnet.lbl.gov
http://escholarship.org/uc/item/2nm9n3jm
http://escholarship.org/uc/item/2nm9n3jm
http://escholarship.org/uc/item/0nq2k8sx
http://escholarship.org/uc/item/03b5g0q4
http://arxiv.org/abs/1608.00044
http://arxiv.org/abs/1608.00044
http://www.nersc.gov/users/computational-systems/edison/configuration
http://www.nersc.gov/users/computational-systems/edison/configuration
https://doi.org/10.1109/IPDPS.2014.115

	Abstract
	1 Introduction
	2 UPC++ Features and Design
	3 UPC++ Performance Benefits
	4 Conclusions
	5 Acknowledgments
	References

